Haryana Board Class 7 Maths Solutions For Chapter 2 Fractions and Decimals

Haryana Board Class 7 Maths Solutions For Chapter 2 Fractions and Decimals

  • Fraction: The numbers of the form \(\frac{a}{b}\), where a and b are whole numbers and b #0, are called “fractions”.
  • Types of fractions:
    1. Proper fraction: In a proper fraction, the numerator is less than the denominator
      Examples: \(\frac{14}{19}, \frac{7}{9}, \frac{2}{3}, \frac{6}{13}, \frac{3}{4}\)
    2. Improper fraction: In an improper fraction, the .numerator is bigger than or equal to the denominator.
      Examples: \(\frac{9}{8}, \frac{7}{4}, \frac{21}{8}, \frac{35}{17}, \frac{43}{19}, \frac{4}{4}\)
    3. Mixed fraction: It is a combination of a whole number and a proper fraction
      Examples: \(1 \frac{3}{4}, 4 \frac{1}{9}, 5 \frac{6}{11}, 7 \frac{3}{4}, 3 \frac{4}{7}\)
      An improper fraction can be converted into a mixed fraction
      Examples: \(\frac{9}{8}=1 \frac{1}{8}\)
      \(\frac{21}{8}=2 \frac{5}{8}\)
    4. Fractions such as \(\frac{1}{2}, \frac{2}{4}, \frac{3}{6}\)…………. are called equivalent fractions
    5. ) Like fractions: Fractions with same denominators are called like fractions
      Examples: \(\frac{1}{7}, \frac{2}{7} ; \frac{3}{5}, \frac{2}{5}\)
    6.  Unlike fractions: Fractions with different denominators are called unlike fractions
      Examples: \( \frac{8}{9}, \frac{2}{7}, \frac{18}{17} \)……….
  • Division of fractions: To divide a fraction with another fraction we multiply with its reciprocal.
  • Example: \( \frac{2}{3} \div \frac{3}{4}=\frac{2}{3} \times \frac{4}{3}=\frac{8}{9} \)
  • Decimal fractions or Decimal numbers:
  • Fractions whose denominators are multiples of 10 only are called decimal fractions or decimal numbers.
    Example: \( 2.3=\frac{23}{10}, 0.47=\frac{47}{100} \text { etc. } \)
    Multiplication of decimal number by 10,100, 1000 etc.: When a decimal number is multiplied by16, 100, 1000 etc., the decimal point in the product shifts to the right as many zeros as in 10, 100, 1000 etc.
  • We can change an improper fraction to . a mixedfraction and vice – versa.
  • Multiplying a fraction with a whole number:
    To multiply a fraction with a whole number we multiply the whole number with the numerator and keeping the denominator same.
    Example: \( 2 \times \frac{7}{5}=\frac{14}{5} \)
  • Product of two fractions \( =\frac{\text { Product of Numerators }}{\text { Product of Denominators }}\)Example: \(\frac{5}{6} \times \frac{2}{7}=\frac{5 \times 2}{6 \times 7}=\frac{10}{42}\)
  • ‘of’ represents multiplication.
    Example: \(\frac{1}{2} \text { of } 3=\frac{1}{2} \times 3\)
  • Reciprocal of a fraction: If \( \frac{a}{b} \) then \( \frac{b}{a}\) is called its reciprocal.
  • A fraction means a part of a group of a region.
  • Every fraction contains a numerator and a denominator
    Example: In \(\frac{4}{7}\) is the numerator and 7 is the denominator.

Solutions To Try These

1. Find:

Solution: \( \frac{2}{7} \times 3=\frac{2 \times 3}{7}=\frac{6}{7}\)

2. \( \frac{9}{7} \times 6\)

Solution:

\( \frac{9}{7} \times 6=\frac{9 \times 6}{7}=\frac{54}{7}=7 \frac{5}{7}\)

3. \( 3 \times \frac{1}{8}\)

Solution:

\( 3 \times \frac{1}{8}=\frac{3 \times 1}{8}=\frac{3}{8}\)

HBSE Class 7 Fractions and Decimals Solutions

4. \( \frac{13}{11} \times 6\)

Solution:

\( \frac{13}{11} \times 6=\frac{13 \times 6}{11}=\frac{78}{11}\) \( =7 \frac{1}{11}\)

2. Represent pictorially = \( 2 \times \frac{2}{5}=\frac{4}{5}\)

Represent pictorially 2 x 2/5=4/5

 

Exercise – 2.1

1) Which of the drawings (1) to (4) show:

1. \( 2 \times \frac{1}{5}\)

2. \( 2 \times \frac{1}{2}\)

3. \( 3 \times \frac{2}{3}\)

4. \( 3 \times \frac{1}{4}\)

Which of the drawings (a) to (d) show

Solution:

1-d
2-b
3-a
4-c

Haryana Board Class 7 Maths Fractions and Decimals solutions

2. Some pictures (a) to (c) are given below. Tell which of them show:

1. \( 3 \times \frac{1}{5}=\frac{3}{5}\)

2. \( 2 \times \frac{1}{3}=\frac{2}{3}\)

3. \( 3 \times \frac{3}{4}=2 \frac{1}{4}\)

 

Some pictures (a) to (c) are given

Solution:

1. \( 3 \times \frac{1}{5}=\frac{3}{5}=(\mathrm{c})\)

2. \( 2 \times \frac{1}{3}=\frac{2}{3}=(a)\)

3. \( 3 \times \frac{3}{4}=2 \frac{1}{4}=(b)\)

HBSE 7th Class Fraction and Decimal Word Problems – Focuses on word problems in this chapter.

3. Multiply and reduce to lowest form and convert into a mixed fraction:

1. \( 7 \times \frac{3}{5}\)

Solution: \( 7 \times \frac{3}{5}=\frac{7 \times 3}{5}=\frac{21}{5}=4 \frac{1}{5}\)

2. \( 4 \times \frac{1}{3}\)

Solution: \( 4 \times \frac{1}{3}=\frac{4 \times 1}{3}=\frac{4}{3}=1 \frac{1}{3}\)

3. \( 2 \times \frac{6}{7}\)

Solution:\( 2 \times \frac{6}{7}=\frac{2 \times 6}{7}=\frac{12}{7}=1 \frac{5}{7}\)

4.\( 5 \times \frac{2}{9}\)

Solution:\( 5 \times \frac{2}{9}=\frac{5 \times 2}{9}=\frac{10}{9}=1 \frac{1}{9}\)

5. \( \frac{2}{3} \times 4\)

Solution:\( \frac{2}{3} \times 4=\frac{2 \times 4}{3}=\frac{8}{3}=2 \frac{2}{3}\)

6.\( \frac{5}{2} \times 6\)

Solution:\( \frac{5}{2} \times 6=\frac{5 \times 6}{2}=\frac{30}{2}=15\)

7. \( 11 \times \frac{4}{7}\)

Solution:\( 11 \times \frac{4}{7}=\frac{11 \times 4}{7}=\frac{44}{7}=6 \frac{2}{7}\)

8. \( 20 \times \frac{4}{5}\)

Solution:\( 20 \times \frac{4}{5}=\frac{20 \times 4}{5}=\frac{80}{5}=16\)

9.\( 13 \times \frac{1}{3}\)

Solution: \( 13 \times \frac{1}{3}=\frac{13 \times 1}{3}=\frac{13}{3}=4 \frac{1}{3}\)

10.\( 15 \times \frac{3}{5}\)

Solution:\( 15 \times \frac{3}{5}=\frac{15 \times 3}{5}=\frac{45}{5}=9\)

4. Shade:

1. \( \frac{1}{2}\) of the circles in box (1)

2. \( \frac{2}{3}\) of the trianglesin box (2)

3. \( \frac{3}{5}\) of the squares in box (3)

1)0.5 circles in a box 

2)2 3rd of triangles in a box

Sample Problems Fractions and Decimals Haryana Board Class 7

3) 3 of 5 squares in a box

Addition and subtraction of fractions Class 7 HBSE

Solution:

1)0.5 circles in a box 1

2)2 3rd of triangles in a box 1

3) 3 of 5 squares in a box 1

5. Find:

1) \( \frac{1}{2}\) of (1) 24 (2) 46

Solution: (1) \( \frac{1}{2}\) of 24 =\( \frac{1}{2} \times 24\)\( =\frac{1 \times 24}{2}=\frac{24}{2}=12\)

(2)\( \frac{1}{2} \text { of } 46=\frac{1}{2} \times 46\)

\( =\frac{1 \times 46}{2}=\frac{46}{2}=23\)

2)\( \frac{2}{3}\) of (1) 18 (2) 27

Solution:

1)\( \frac{2}{3}\) of 18 \( =\frac{2}{3} \times 18=\frac{2 \times 18}{3}=\frac{36}{3}=12 \)

(2)\( \frac{2}{3} \text { of } 27=\frac{2}{3} \times 27\)

\( =\frac{2 \times 27}{3}=\frac{54}{3}=18\)

3) \( \frac{3}{4}\) of (1) 16 (2) 36

Solution:

(1)\( \frac{3}{4} \text { of } 16=\frac{3}{4} \times 16=\frac{3 \times 16}{4}=\frac{48}{4}=12\)

(2)\( \frac{3}{4} \text { of } 36=\frac{3}{4} \times 36\)

\( =\frac{3 \times 36}{4}=\frac{108}{4}=27\)

4. \( \frac{4}{5} \) of (1) 20 (2) 35

Solution:

(1)\( \frac{4}{5} \text { of } 20=\frac{4}{5} \times 20=\frac{4 \times 20}{5}=\frac{80}{5}=16 \)

(2) \( \frac{4}{5} \text { of } 35=\frac{4}{5} \times 35 \)

\( =\frac{4 \times 35}{5}=\frac{140}{5}=28 \)

6. Multiply and express as a mixed fraction:

1) \( 3 \times 5 \frac{1}{5} \)

Solution:

\( 3 \times 5 \frac{1}{5}=3 \times\left(\frac{5 \times 5+1}{5}\right)=3 \times\left(\frac{25+1}{5}\right) \) \( =3 \times \frac{26}{5}=\frac{78}{5}=15 \frac{3}{5} \)

2) \( 5 \times 6 \frac{3}{4} \)

Solution:

\( 5 \times 6 \frac{3}{4}=5 \times\left(\frac{6 \times 4+3}{4}\right) \) \( =5 \times\left(\frac{24+3}{4}\right)=5 \times \frac{27}{4} \) \( =\frac{135}{4}=33 \frac{3}{4} \)

3) \( 7 \times 2 \frac{1}{4} \)

Solution: \( 7 \times 2 \frac{1}{4}=7 \times\left(\frac{2 \times 4+1}{4}\right) \)

\( =7 \times\left(\frac{8+1}{4}\right)=\frac{7 \times 9}{4}=\frac{63}{4}=15 \frac{3}{4} \)

4) \( 4 \times 6 \frac{1}{3} \)

Solution: \( 4 \times 6 \frac{1}{3}=4 \times\left(\frac{6 \times 3+1}{3}\right) \)

\( =4 \times\left(\frac{18+1}{3}\right)=\frac{4 \times 19}{3}=\frac{76}{3} \) \( =25 \frac{1}{3} \)

5) \( 3 \frac{1}{4} \times 6 \)

Solution: \( \left(\frac{3 \times 4+1}{4}\right) \times 6=\left(\frac{12+1}{4}\right) \times 6 \)

\( =\frac{13}{4} \times 6=\frac{13 \times 6}{4}=\frac{78}{4} \) \( =\frac{78 \div 2}{4 \div 2}=\frac{39}{2}=19 \frac{1}{2} \)

Multiplying and Dividing Fractions Class 7 Haryana Board

6) \( 3 \frac{2}{5} \times 8 \)

Solution: \( \left(\frac{3 \times 5+2}{5}\right) \times 8=\left(\frac{15+2}{5}\right) \times 8 \)

\( =\frac{17 \times 8}{5}=\frac{136}{5}=27 \frac{1}{5} \)

7) Find:

1) \( \frac{1}{2} of \) (1) \( 2 \frac{3}{4} \) (2)\( 4 \frac{2}{9} \)

Solution:

(1) \( \frac{1}{2} \text { of } 2 \frac{3}{4}=\frac{1}{2} \times\left(\frac{2 \times 4+3}{4}\right) \)

\( =\frac{1}{2} \times\left(\frac{8+3}{4}\right)=\frac{1}{2} \times \frac{11}{4} \) \( =\frac{1 \times 11}{2 \times 4}=\frac{11}{8}=1 \frac{3}{8}\)

(2) \( \frac{1}{2} \text { of } 4 \frac{2}{9}=\frac{1}{2} \times\left(\frac{4 \times 9+2}{9}\right) \)

\( =\frac{1}{2} \times\left(\frac{36+2}{9}\right)=\frac{1}{2} \times \frac{38}{9} \) \( =\frac{1 \times 38}{2 \times 9}=\frac{38}{18}=\frac{38 \div 2}{18 \div 2}=\frac{19}{9}=2 \frac{1}{9} \)

Multiplication and division of decimals Class 7 HBSE

2) \( \frac{5}{8} \) of (1) \( 3 \frac{5}{6} \) (2) \( 9 \frac{2}{3} \)

Solution:

(1) \( \frac{5}{8} \text { of } 3 \frac{5}{6} \)

\( =\frac{5}{8} \times\left(\frac{3 \times 6+5}{6}\right)=\frac{5}{8} \times\left(\frac{18+5}{6}\right) \) \( =\frac{5}{8} \times \frac{23}{6}=\frac{115}{48}=2 \frac{19}{48} \)

(2) \( \frac{5}{8} \text { of } 9 \frac{2}{3} \)

\( =\frac{5}{8} \times\left(\frac{9 \times 3+2}{3}\right)=\frac{5}{8} \times\left(\frac{27+2}{3}\right) \) \( =\frac{5}{8} \times \frac{29}{3}=\frac{5 \times 29}{8 \times 3}=\frac{145}{24}=6 \frac{1}{24} \)

 

8) Vidya and Pratap went for a picnic. Their mother gave them a water bottle that contained 5 litres of water. Vidya consumed \( \frac{2}{5} \) of the water. Pratap consumed the remaining water

(1) How much water did Vidya drink?

(2) What fraction of the total quantity of water did Pratap drink?

Solution:

Quantity of water in the bottle = 5 litres

(1) Water consumed by Vidya = \( \frac{2}{5} \) of 5 litres

\( =\frac{2}{5} \times 5=\frac{2 \times 5}{5}=\frac{10}{5}=2 \text { litres } \)

(2) Water consumed by Pratap = \( \frac{1}{1}-\frac{2}{5} \)

\( =\frac{5-2}{5}=\frac{3}{5} \text { litres } \)

 

Solutions To Try These

Find:

1. \( 7 \div \frac{2}{5} \)

Solution: \( 7 \div \frac{2}{5}=7 \times \frac{5}{2}=\frac{7 \times 5}{2}=\frac{35}{2}=17 \frac{1}{2} \)

2. \( 6 \div \frac{4}{7} \)

Solution: \( \begin{aligned}
6 \div \frac{4}{7} & =6 \times \frac{7}{4}=\frac{6 \times 7}{4} \\
& =\frac{42}{4}=\frac{42 \div 2}{4 \div 2}=\frac{21}{2}=10 \frac{1}{2}
\end{aligned} \)

3. \( 2 \div \frac{8}{9} \)

Solution: \( \begin{aligned}
2 \div \frac{8}{9}=2 \times \frac{9}{8} & =\frac{2 \times 9}{8}=\frac{18}{8}=\frac{18 \div 2}{8 \div 2} \\
& =\frac{9}{4}=2 \frac{1}{4}
\end{aligned} \)

Solutions To Try These

Find:

1. \( 6 \div 5 \frac{1}{3} \)

Solution: \( \begin{aligned}
6 \div 5 \frac{1}{3} & =6 \div \frac{16}{3}=6 \times \frac{3}{16}=\frac{6 \times 3}{16} \\
& =\frac{18}{16}=\frac{18 \div 2}{16 \div 2}=\frac{9}{8}=1 \frac{1}{8}
\end{aligned} \)

2. \( 7 \div 2 \frac{4}{7} \)

Solution:

\( \begin{aligned}
7 \div 2 \frac{4}{7} & =7 \div \frac{18}{7} \\
& =7 \times \frac{7}{18}=\frac{49}{18}=2 \frac{13}{18}
\end{aligned} \)

HBSE Class 7 Maths Chapter 2 Guide

Solutions To Try These

Find:

1. \( \frac{3}{5} \div \frac{1}{2} \)

Solution: \( \frac{3}{5} \div \frac{1}{2}=\frac{3}{5} \times \frac{2}{1}=\frac{3 \times 2}{5 \times 1}=\frac{6}{5}=1 \frac{1}{5} \)

2. \( \frac{1}{2} \div \frac{3}{5} \)

Solution:

\( \frac{1}{2} \div \frac{3}{5}=\frac{1}{2} \times \frac{5}{3}=\frac{1 \times 5}{2 \times 3}=\frac{5}{6} \)

3. \( 2 \frac{1}{2} \div \frac{3}{5} \)

Solution:

\( \begin{gathered}
2 \frac{1}{2} \div \frac{3}{5}=\frac{5}{2} \div \frac{3}{5}=\frac{5}{2} \times \frac{5}{3}=\frac{5 \times 5}{2 \times 3} \\
=\frac{25}{6}=4 \frac{1}{6}
\end{gathered} \)

4. \( 5 \frac{1}{6} \div \frac{9}{2} \)

Solution:

\( \begin{aligned}
5 \frac{1}{6} \div \frac{9}{2} & =\frac{31}{6} \div \frac{9}{2}=\frac{31}{6} \times \frac{2}{9} \\
& =\frac{31 \times 2}{6 \times 9}=\frac{62}{54}=\frac{62 \div 2}{54 \div 2} \\
& =\frac{31}{27}=1 \frac{4}{27}
\end{aligned} \)

Exercise 2.3

1. Find:

1. \( 12 \div \frac{3}{4} \)

Solution:

\( 12 \div \frac{3}{4}=\frac{12}{1} \times \frac{4}{3}=\frac{12 \times 4}{1 \times 3}=\frac{48}{3}=16 \)

2. \( 14 \div \frac{5}{6} \)

Solution:

\( 14 \div \frac{5}{6}=\frac{14}{1} \times \frac{6}{5}=\frac{14 \times 6}{1 \times 5}=\frac{84}{5}=16 \frac{4}{5} \)

3. \( 8 \div \frac{7}{3} \)

Solution:

\( 8 \div \frac{7}{3}=\frac{8}{1} \times \frac{3}{7}=\frac{8 \times 3}{1 \times 7}=\frac{24}{7}=3 \frac{3}{7} \)

4. \( 4 \div \frac{8}{3} \)

Solution:

\( \begin{aligned}
4 \div \frac{8}{3} & =\frac{4}{1} \times \frac{3}{8}=\frac{4 \times 3}{1 \times 8}=\frac{12}{8}=\frac{12 \div 4}{8 \div 4} \\
& =\frac{3}{2}=1 \frac{1}{2}
\end{aligned} \)

5. \( 3 \div 2 \frac{1}{3} \)

Solution:

\( \begin{aligned}
3 \div 2 \frac{1}{3}=3 \div \frac{7}{3}=\frac{3}{1} \times \frac{3}{7} & =\frac{3 \times 3}{1 \times 7} \\
& =\frac{9}{7}=1 \frac{2}{7}
\end{aligned} \)

Important Concepts Fractions and Decimals Class 7 HBSE

6. \( 5 \div 3 \frac{4}{7} \)

Solution:

\( \begin{aligned}
5 \div 3 \frac{4}{7} & =5 \div \frac{25}{7}=\frac{5}{1} \times \frac{7}{25}=\frac{5 \times 7}{1 \times 25} \\
& =\frac{35}{25}=\frac{35 \div 5}{25 \div 5}=\frac{7}{5}=1 \frac{2}{5}
\end{aligned} \)

2. Find the reciprocal of each of the following fractions. Classify the reciprocal as proper fraction,improper fraction and whole numbers.

1) \( \frac{3}{7} \)

Solution: \( \text { Reciprocal of } \frac{3}{7} \text { is } \frac{7}{3} \)

\( \frac{7}{3} \text { is an improper fraction. } \)

Word problems on fractions and decimals Class 7 HBSE

2) \( \frac{5}{8} \)

Solution: \( \text { Reciprocal of } \frac{5}{8} \text { is } \frac{8}{5} \)

\( \frac{8}{5} \text { is an improper fraction. } \)

3) \( \frac{9}{7} \)

Solution: \( \text { Reciprocal of } \frac{9}{7} \text { is } \frac{7}{9} \)

\( \frac{7}{9} \text { is a proper fraction. } \)

4) \( \frac{6}{5} \)

Solution: \( \frac{12}{7} \)

\( \text { Reciprocal of } \frac{6}{5} \text { is } \frac{5}{6} \) \( \frac{5}{6} \text { is a proper fraction. } \)

5) \( \frac{12}{7} \)

Solution:

\( \text { Reciprocal of } \frac{12}{7} \text { is } \frac{1}{12} \) \( \frac{7}{12} \text { is a proper fraction. } \)

6) \( \frac{1}{8} \)

Solution: \( \text { Reciprocal of } \frac{1}{8} \text { is } \frac{8}{1}=8 \)

∴ 8 is a whole number

7) \( \frac{1}{11} \)

Solution:

\( \text { Reciprocal of } \frac{1}{11} \text { is } \frac{11}{1}=11 \)

∴ 11 is a whole number.

3. Find:

1) \( \frac{7}{3} \div 2 \)

Solution:

\( \frac{7}{3} \div \frac{2}{1}=\frac{7}{3} \times \frac{1}{2}=\frac{7 \times 1}{3 \times 2}=\frac{7}{6}=1 \frac{1}{6} \)

2) \( \frac{4}{9} \div 5 \)

Solution:

\( \frac{4}{9} \div \frac{5}{1}=\frac{4}{9} \times \frac{1}{5}=\frac{4 \times 1}{9 \times 5}=\frac{4}{45} \)

3) \( \frac{6}{13} \div 7 \)

Solution:

\( \frac{6}{13} \div \frac{7}{1}=\frac{6}{13} \times \frac{1}{7}=\frac{6 \times 1}{13 \times 7}=\frac{6}{91}\)

4) \( 4 \frac{1}{3} \div 3 \)

Solution:

\( \begin{aligned}
4 \frac{1}{3} \div 3=\frac{13}{3} \div \frac{3}{1} & =\frac{13}{3} \times \frac{1}{3} \\
& =\frac{13 \times 1}{3 \times 3}=\frac{13}{9}=1 \frac{4}{9}
\end{aligned} \)

5) \( 3 \frac{1}{2} \div 4 \)

Solution:

\( 3 \frac{1}{2} \div 4=\frac{7}{2} \div \frac{4}{1}=\frac{7}{2} \times \frac{1}{4}=\frac{7 \times 1}{2 \times 4}=\frac{7}{8} \)

6) \( 4 \frac{3}{7} \div 7 \)

Solution:

\( \begin{aligned}
4 \frac{3}{7} \div 7=\frac{31}{7} \div \frac{7}{1} & =\frac{31}{7} \times \frac{1}{7} \\
& =\frac{31 \times 1}{7 \times 7}=\frac{31}{49}
\end{aligned} \)

4. Find:

1) \( \frac{2}{5} \div \frac{1}{2} \)

Solution:

\( \frac{2}{5} \div \frac{1}{2}=\frac{2}{5} \times \frac{2}{1}=\frac{2 \times 2}{5 \times 1}=\frac{4}{5} \)

2) \( \frac{4}{9}+\frac{2}{3} \)

Solution:

\( \begin{aligned}
\frac{4}{9} \div \frac{2}{3}=\frac{4}{9} \times \frac{3}{2} & =\frac{4 \times 3}{9 \times 2} \\
& =\frac{12}{18}=\frac{12 \div 6}{18 \div 6}=\frac{2}{3}
\end{aligned} \)

3) \( \frac{3}{7} \div \frac{8}{7} \)

Solution:

\( \frac{3}{7} \div \frac{8}{7}=\frac{3}{7} \times \frac{7}{8}=\frac{3 \times 7}{7 \times 8}=\frac{21}{56}=\frac{21 \div 7}{56 \div 7}=\frac{3}{8} \)

4) \( 2 \frac{1}{3} \div \frac{3}{5} \)

Solution:

\( \begin{aligned}
2 \frac{1}{3} \div \frac{3}{5}=\frac{7}{3} \div \frac{3}{5} & =\frac{7}{3} \times \frac{5}{3} \\
& =\frac{7 \times 5}{3 \times 3}=\frac{35}{9}=3 \frac{8}{9}
\end{aligned} \)

5) \( 3 \frac{1}{2} \div \frac{8}{3} \)

Solution:

\( \begin{aligned}
3 \frac{1}{2} \div \frac{8}{3}=\frac{7}{2} \div \frac{8}{3} & =\frac{7}{2} \times \frac{3}{8} \\
& =\frac{7 \times 3}{2 \times 8}=\frac{21}{16}=1 \frac{5}{16}
\end{aligned} \)

6) \( \frac{2}{5} \div 1 \frac{1}{2} \)

Solution:

\( \frac{2}{5} \div 1 \frac{1}{2}=\frac{2}{5} \div \frac{3}{2}=\frac{2}{5} \times \frac{2}{3}=\frac{2 \times 2}{5 \times 3}=\frac{4}{15} \)

7) \( 3 \frac{1}{5} \div 1 \frac{2}{3} \)

Solution:

\( \begin{aligned}
3 \frac{1}{5} \div 1 \frac{2}{3}=\frac{16}{5} \div \frac{5}{3} & =\frac{16}{5} \times \frac{3}{5} \\
& =\frac{16 \times 3}{5 \times 5}=\frac{48}{25}=1 \frac{23}{25}
\end{aligned} \)

8) \( 2 \frac{1}{5} \div 1 \frac{1}{5} \)

Solution:

\( \begin{aligned}
2 \frac{1}{5} \div 1 \frac{1}{5} & =\frac{11}{5} \div \frac{6}{5}=\frac{11}{5} \times \frac{5}{6}=\frac{11 \times 5}{5 \times 6}=\frac{55}{30} \\
& =\frac{55 \div 5}{30 \div 5}=\frac{11}{6}=1 \frac{5}{6}
\end{aligned} \)

1. Find:

1) 2.7×4

Solution: 2.7×4 = 10.8

2) 1.8 x 1.2

Solution: 1.8 x 1.2 = 2.16

3) 2.3 x 4.35

Solution: 2.3 x 4.35 = 10.005

2. Arrange the products obtained in (1) in descending order.

Solution:

The three products obtained in (1) are

10.8, 2.16,10.005. Their descending order is 10.8,10.005,2.16.

Solutions To Try These

Find:

1) 0.3 x 10

Solution: 0.3 x l0 = 3

2) 1.2×100

Solution: 1.2 x100 = 1.20 x100 = 120

3) 56.3 x1000

Solution: 56.3 x1000 = 56.300 x1000 = 56300

Exercise -2.4

1. Find:

1) 0.2 x 6

Solution: 0.2 x 6 = 1.2

2) 8 x 4.6

Solution: 8×4.6 = 36.8

3) 2.71 x 5

Solution: 2.71 x 5 = 13.55

4) 20.1 x 4

Solution: 20.1 x 4 = 80.4

5) 0.05 x 7

Solution: 0.05×7 = 0.35

6) 211.02×4

Solution: 211.02 x4 = 844.08

7) 2x 0.86

Solution: 2×0.86 = 1.72

2. Find the area of rectangle whose length is 5.7 cm and breadth is 3 cm.

Solution:

Length of the rectangle = 5.7 cm

Breadth of the rectangle = 3 cm

Area of the rectangle = Length x Breadth

= 5.7 cm x 3 cm = 17.1 cm2

3. Find:

1) 1.3 x 10

Solution: 1.3 x 10 = 13.0 or 13

2) 36.8 x 10

Solution: 36.8 x10 = 368.0 or 368

3) 153.7 x 10

Solution: 153.7 x 10 = 1537.0 or 1537

4) 168.07 x 10

Solution: 168.07 x 10 = 1680.7

5) 31.1 x 100

Solution: 31.1 x100 = 3110

6) 156.1 xl00

Solution: 156.1 x100 = 15610

7) 3.62 x 100

Solution: 3.62 x 100 = 362

8) 43.07 x100

Solution: 43.07 x 100 = 4307

9) 0.5 x 10

Solution: 0.5 x10 = 5

10) 0.08 x 10

Solution: 0.08 x 10 = 0.80 or 0.8

11) 0.9 x 100

Solution: 0.9 x 100 = 90.0 or 90

12) 0.03 x 1000

Solution: 0.03 x 1000 = 30.0 or 30

How to convert fractions to decimals Class 7

4. A two-wheeler covers a distance of 55.3 km with one litre of petrol. How much distance will it cover in 10 litres of petrol ?

Solution:

Distance covered with one litre of petrol = 55.3 km

Distance covered with10litres of petrol = 55.3 x10 = 553 km

5. Find:

1) 2.5 x 0.3

Solution: 2.5 x 0.3 = 0.75

2) 0.1 x 51.7

Solution: 0.1 x 51.7 = 5.17

3) 0.2 x 316.8

Solution: 0.2 x 316.8 = 63.36

4) 1.3 x 3.1

Solution: 1.3×3.1=4.03

5) 0.5 x 0.05

Solution: 0.5 x 0.05 = 0.025

6) 11.2 x 0.15

Solution: 11.2 x 0.15 =1.680

7) 1.07 x. 0.02

Solution: 1.07 X 0.02 = 0.0214 .

8) 10.05 x 1.05

Solution: 10.05 x 1.05 = 10.5525

9) 101.01 x 0.01

Solution: 101.01 x 0.01 = 1.0101

10) 100.01 x 1.1

Solution: 00.01 x 1.1 = 110.011

Solutions To Try These

1. Find:

1) 235.4 – 10

Solution: 235.4 + 10 = 23.54

2) 235.4 +100

Solution: 235.4 = 2.354

3) 235.4 +1000

Solution: 235.4 +1000 = 0.2354

2. Find:

1) 35.7 +3 = ?

Solution: 35.7+3 = 11.9

2) 25.5 +3 =?

Solution: 25.5 +3 = 8.5

Practice Problems Fractions and Decimals Class 7 Haryana Board

3. Find:

1) 43.15+5 = ?

Solution: 43.15 +5 = 4315 +5 = 863

43.15 +5 = 8.63

2) 82.44 +6 =?

Solution: 8244 + 6 = 1374

82.44 + 6 = 13.74

Solutions To Try These

1. Find:

1) 15.5+5

Solution: 155 +5=31

15.5 +5 = 3.1

2) 126.35 +7

Solution: 12635 + 7 = 1805

126.35 +7 = 18.05

2. Find:

1. \( \frac{7.75}{0.25} \)

Solution:

\( \frac{7.75}{0.25}=\frac{7.75 \times 100}{0.25 \times 100}=\frac{775}{25}=31 \)

2. \( \frac{42.8}{0.02} \)

Solution:

\( \frac{42.8}{0.02}=\frac{42.8 \times 100}{0.02 \times 100}=\frac{4280}{2}=2140 \)

3) \( \frac{5.6}{1.4} \)

Solution: \( \frac{5.6}{1.4}=\frac{5.6 \times 10}{1.4 \times 10}=\frac{56}{14}=4 \)

Exercise – 2.5

1. Find:

1. 0.4 ÷ 2

Solution:

\( 0.4 \div 2=0.4 \times \frac{1}{2}=\frac{4}{10} \times \frac{1}{2}=\frac{2}{10}=0.2 \)

2) 0.35 ÷ 5

Solution:

\( \begin{gathered}
0.35 \div 5=0.35 \times \frac{1}{5}=\frac{35}{100} \times \frac{1}{5} \\
\quad=\frac{5 \times 7}{100 \times 5}=\frac{7}{100}=0.07
\end{gathered} \)

3) 2.48 ÷ 4

Solution:

\( \begin{gathered}
2.48 \div 4=2.48 \times \frac{1}{4}=\frac{248}{100} \times \frac{1}{4} \\
=\frac{62}{100}=0.62
\end{gathered} \)

4) 65.4 ÷ 6

Solution:

\( \begin{aligned}
65.4 \div 6=65.4 \times \frac{1}{6}=\frac{654}{10} & \times \frac{1}{6} \\
& =\frac{109}{10}=10.9
\end{aligned} \)

5) 651.2 ÷ 4

Solution:

\( \begin{aligned}
651.2 \div 4=651.2 \times \frac{1}{4} & =\frac{6512}{10} \times \frac{1}{4} \\
& =\frac{1628}{10}=162.8
\end{aligned} \)

6) 14.49 ÷ 7

Solution:

\( \begin{aligned}
14.49 \div 7=14.49 \times \frac{1}{7} & =\frac{1449}{100} \times \frac{1}{7} \\
& =\frac{207}{100}=2.07
\end{aligned} \)

7) 3.96 ÷ 4

Solution:

\( \begin{aligned}
3.96 \div 4=3.96 \times \frac{1}{4}=\frac{396}{100} \times \frac{1}{4}= & \frac{99}{100} \\
& =0.99
\end{aligned} \)

8) 0.80 ÷ 5

Solution:

\( \begin{aligned}
0.80 \div 5=0.80 \times \frac{1}{5} & =\frac{80}{100} \times \frac{1}{5} \\
& =\frac{16}{100}=0.16
\end{aligned} \)

2. Find:

1) 4.8 ÷ 10

Solution:

\( \begin{aligned}
& 4.8 \div 10=4.8 \times \frac{1}{10} \\
& =\frac{48}{10} \times \frac{1}{10}=\frac{48}{100}=0.48
\end{aligned} \)

2) 52.5 ÷ 10

Solution:

\( \begin{aligned}
& 52.5 \div 10=52.5 \times \frac{1}{10}=\frac{525}{10} \times \frac{1}{10} \\
& =\frac{525}{100}=5.25
\end{aligned} \)

3) 0.7 ÷ 10

Solution:

\(
\begin{aligned}
& 0.7 \div 10=0.7 \times \frac{1}{10}=\frac{7}{10} \times \frac{1}{10} \\
& =\frac{7}{100}=0.07
\end{aligned} \)

4) 33.1 ÷ 10

Solution:

\( \begin{aligned}
33.1 & \div 10=33.1 \times \frac{1}{10}=\frac{331}{10} \times \frac{1}{10} \\
& =\frac{331}{100}=3.31
\end{aligned} \)

5) 272.23 ÷ 10

Solution: 272.23 ÷10 = 27.223

6) 0.56 ÷ 10

Solution: 0.56 ÷ 10 = 0.056

7) 3.97 ÷ 10

Solution: 3.97 ÷10 = 0.397

Key Questions in Fractions and Decimals for Class 7 HBSE

3. Find:

1) 2.7 ÷100

Solution: 2.7 ÷100 = 0.027

2) 0.3 ÷ 100

Solution: 0.3 ÷100 = 0.003

3) 0.78 ÷100

Solution: 0.78 ÷100 = 0.0078

4) 432.6 ÷100

Solution: 432.6÷100 = 4.326

5) 23.6 ÷100

Solution: 23.6 ÷100 = 0.236

6) 98.53 ÷100

Solution: 98.53 ÷100 = 0.9853

4. Find:

1) 7.9 ÷1000

Solution: 7.9 ÷1000 = 0.0079

2) 26.3 ÷1000

Solution: 26.3÷1000 = 0.0263

3) 38.53÷1000

Solution: 38.53÷1000 = 0.03853

4) 128.9÷1000

Solution: 128.9÷1000 = 0.1289

5) 0.5 ÷1000

Solution: 0.5 ÷1000 = 0.0005

5. Find:

1) 7 ÷ 3.5

Solution: \( 7 \div 3.5=\frac{7.0}{3.5}=\frac{70}{35}=2 \)

2) 36 ÷ 0.2

Solution: \( 36 \div 0.2=\frac{36.0}{0.2}=\frac{360}{2}=180 \)

3) 3.25 ÷ 0.5

Solution: \( 3.25 \div 0.5=\frac{3.25}{0.50}=\frac{325}{50}=6.5\)

4)30.94 ÷ 0.7

Solution: \( 30.94 \div 0.7=\frac{30.94}{0.70}=\frac{3094}{70}=44.2 \)

5) 0.5 ÷0.25

Solution: \( 0.5 \div 0.25=\frac{0.50}{0.25}=\frac{50}{25}=2 \)

6) 7.75 0.25

Solution: \( 7.75 \div 0.25=\frac{7.75}{0.25}=\frac{775}{25}=31 \)

7) 76.5 -0.15

Solution: \( 76.5 \div 0.15=\frac{76.50}{0.15}=\frac{7650}{15}=510 \)

8) 37.8 -1.4

Solution: \( 37.8 \div 1.4=\frac{37.8}{1.4}=\frac{378}{14}=27 \)

9) 2.73 -1.3

Solution: 2.73 -1.3

\( =\frac{2.73}{1.3}=\frac{2.73}{1.30}=\frac{273}{130}=\frac{21}{10}=2.1 \)

 

6. A vehicle covers a distance of 43.2 km in 2.4 litres of petrol. How much distance will it cover with one litre of petrol?

Solution: Distance covered with 2.4 litres of petrol = 43.2 km

Distance covered with1 litre ofpetrol = 43.2 4- 2.4

\( =\frac{43.2}{2.4}=\frac{432}{24}=18 \mathrm{~km} \)

Additional Questions

Very Short Answer Questions

1. Surya can walk \( \frac{18}{5} \) kmin an hour. How much distance can he walk in \( 2 \frac{1}{2} \) hours?

Solution:

The distance walked by Suryain an hour \( =\frac{18}{5} \mathrm{~km} \)

The distance walked by

\( \text { Surya in } 2 \frac{1}{2} \text { hours }=2 \frac{1}{2} \times \frac{18}{5} \)

\(\frac{5}{2}\) x \(\frac{18}{5}\)

= 9 km

2. If 24 students share \( 4 \frac{4}{5} \) kg of cake, then how much cake does each one get?

Solution:

Total number of students = 24

Total weight of cake \( =4 \frac{4}{5} \mathrm{~kg} \)

\( =\frac{24}{5} \mathrm{~kg} \)

The share of a cake that each one get

\( \begin{aligned}
& =\frac{24}{5} \div 24 \\
& =\frac{24}{5} \times \frac{1}{24}=\frac{1}{5} \mathrm{~kg}(200 \mathrm{~g})
\end{aligned} \)

3. If the cost of each cement bagis 326.50,then find the cost of 24 bags of cement.

Solution:

The cost of each cement bag = 326.50

The cost of 24 bags of cement = 24 x 326.50

= 7836

= 7836

4. Dharmika purchased chudidhar material of 1.40m at the rate of 152.5 per metre. Find the amount to be paid.

Solution:

The length of chudidhar material purchased by Dharmika = 1.40 m

The cost of material per meter = 152.5

The total amount to be paid = 1.40 x 152.5

= 213.5

= 213.50

5. If a picture chart costs 4.25. Amrutha wants to buy 16 charts to make an album. How much money does she have; to pay?

Solution:

The cost of picture chart = 4.25

Number of charts that she want to buy = 16

The amount of money she has to pay

= 4.25×16

= 68.00 = 68

6. Which is bigger \( \frac{5}{8} \text { or } \frac{3}{5} ? \)

Solution:

\( \begin{gathered}
\frac{5}{8}=\frac{5 \times 5}{8 \times 5}=\frac{25}{40}, \frac{3}{5}=\frac{3 \times 8}{5 \times 8}=\frac{24}{40} \\
\frac{25}{40}>\frac{24}{40} \text { and So, } \frac{5}{8}>\frac{3}{5}
\end{gathered} \)

[Hint: To compare, convert the fractions into like fractions]

Short Answer Questions

7. In Jagananna Gorumudda (MDM) scheme each student got \( \frac{3}{20} \) kg. rice per day, find the weight of the rice required for 60 students in a class per day.

Solution: The weight of rice for each student per day = \( \frac{3}{20} \) kg

Number of students in a class = 60

Total weight of rice required for 60 students in a class per day

\( =\frac{3}{20} \times 60 \)

\( \frac{3}{20} \times \frac{60}{1} \) = 3 x 3 = 9 kg

8. Find the product:

1. 32.5 x 8

Solution: 1) 32.5 x 8

\( \begin{aligned}
& =\frac{325}{10} \times 8 \\
& =\frac{2600}{10}
\end{aligned} \)

= 260.0

= 260

2. 94.62 x7

Solution: 94.62 x7

\( \begin{aligned}
& =\frac{9462}{100} \times 7 \\
& =\frac{66234}{100}
\end{aligned} \)

= 662.34

3.109.761 x 3

Solution: 109.761 x 3

\( \begin{aligned}
& =\frac{109761}{1000} \times 31 \\
& =\frac{3402591}{1000}
\end{aligned} \)

= 3402.591

4. 61 x 2.39

Solution: 61 x 2.39

\( \begin{aligned}
& =61 \times \frac{239}{100} \\
& =\frac{14579}{100}
\end{aligned} \)

= 145.79

9. Find the product of the following

1. 23.4×6
2. 681.25×9
3. 53.29×14
4. 8 x 2.52
5. 25 x 2.013

Solution:

1. 23.4 x 6

23.4 x 6 = 140.4

(or)

\( \begin{aligned}
23.4 \times 6 & =\frac{234}{10} \times 6 \\
& =\frac{1404}{10}=140.4
\end{aligned} \)

2. 681.25 x 9

681.25 x 9 = 6131.25

(or)

\( 681.25 \times 9=\frac{68125}{100} \times 9=\frac{613125}{100}=6131.25 \)

3. 53.29 x 14

53.29 x 14 – 746.06

or

\( \begin{aligned}
53.29 \times 14=\frac{5329}{100} \times 14 & =\frac{74606}{100} \\
& =746.06
\end{aligned} \)

4. 8 x-2.52

8 x 2.52 = 20.16

or

\( 8 \times 2.52=8 \times \frac{252}{100}=\frac{2016}{100}=20.16 \)

5. 25 x 2.013

25 x 2.013 = 50.325

or

\( 25 \times 2.013=25 \times \frac{2013}{1000}=\frac{50325}{1000}=50.325 \)

10. Represent \( 2 \frac{1}{4} \) pictorially. How many units are needed for this?

Solution:

representing 9 th 4 th of pictorially

The shaded region in the above figure represents the fraction \( 2 \frac{1}{4} \).

Three units are needed for this.

11. Arrange the following in ascending order.

1. \( \frac{5}{8}, \frac{5}{6}, \frac{1}{2} \)

2. \( \frac{2}{5}, \frac{1}{3}, \frac{3}{10} \)

Solution:

1. Given fractious are \( \frac{5}{8}, \frac{5}{6}, \frac{1}{2} \)

L.C.M. of the denominators 8, 6 and 2 = 24

Now \( \frac{5}{8}=\frac{5 \times 3}{8 \times 3}=\frac{15}{24} \)

\( \begin{aligned}
& \frac{5}{6}=\frac{5 \times 4}{6 \times 4}=\frac{20}{24} \\
& \frac{1}{2}=\frac{1 \times 12}{2 \times 12}=\frac{12}{24}
\end{aligned} \)

Clearly

\( \begin{aligned}
& \frac{12}{24}<\frac{15}{24}<\frac{20}{24} \\
& \frac{1}{2}<\frac{5}{8}<\frac{5}{6}
\end{aligned}\)

Second method

\( \frac{1}{2}=\frac{1 \times 5}{2 \times 5}=\frac{5}{10} \)

clearly 10 > 8 > 6

\( \begin{aligned}
& \frac{5}{10}<\frac{5}{8}<\frac{5}{6} \\
& \frac{1}{2}<\frac{5}{8}<\frac{5}{6}
\end{aligned} \)

2. Given fractions are \( \frac{2}{5}, \frac{1}{3}, \frac{3}{10} \)

LCM of the denominators 5, 3, 10 = 30

Now \( \begin{aligned}
& \frac{2}{5}=\frac{2 \times 6}{5 \times 6}=\frac{12}{30} \\
& \frac{1}{3}=\frac{1 \times 10}{3 \times 10}=\frac{10}{30} \\
& \frac{3}{10}=\frac{3 \times 3}{10 \times 3}=\frac{9}{30}
\end{aligned} \)

Clearly

\( \begin{aligned}
& \frac{9}{30}<\frac{10}{30}<\frac{12}{30} \\
& \frac{3}{10}<\frac{1}{3}<\frac{2}{5}
\end{aligned} \)

12. Write the following fractions in ascending order.

1. \( \frac{3}{2}, \frac{5}{2}, \frac{1}{2}, \frac{17}{2}, \frac{9}{2} \)

2. \( \frac{6}{5}, \frac{11}{10}, \frac{19}{5}, \frac{7}{10}, \frac{5}{10} \)

3. \( \frac{8}{3}, \frac{7}{6}, 3 \frac{1}{4}, \frac{5}{3}, \frac{11}{4} \)

Solution:

1. Ascending order :

\( \frac{1}{2}<\frac{3}{2}<\frac{5}{2}<\frac{9}{2}<\frac{17}{2} \)

2. \( \frac{6}{5}, \frac{11}{10}, \frac{19}{5}, \frac{7}{10}, \frac{5}{10} \)

LCM of denominators = 10

\( \frac{6}{5}=\frac{6}{5} \times \frac{2}{2}=\frac{12}{10} ; \frac{19}{5}=\frac{19}{5} \times \frac{2}{2}=\frac{38}{10} \)

Ascending order:

\( \begin{aligned}
& =\frac{5}{10}<\frac{7}{10}<\frac{11}{10}<\frac{12}{10}<\frac{38}{10} \\
& =\frac{5}{10}<\frac{7}{10}<\frac{11}{10}<\frac{6}{5}<\frac{19}{5}
\end{aligned} \)

3. \( \frac{8}{3}, \frac{7}{6}, 3 \frac{1}{4}, \frac{5}{3}, \frac{11}{4} \)

LCM of denominators = 12

\( \begin{aligned}
& \frac{8}{3}=\frac{8}{3} \times \frac{4}{4}=\frac{32}{12} ; \frac{7}{6}=\frac{7}{6} \times \frac{2}{2}=\frac{14}{12} \\
& 3 \frac{1}{4}=\frac{13}{4} \times \frac{3}{3}=\frac{39}{12} \\
& \frac{5}{3}=\frac{5}{3} \times \frac{4}{4}=\frac{20}{12} ; \frac{11}{4}=\frac{11}{4} \times \frac{3}{3}=\frac{33}{12}
\end{aligned} \)

Ascending order:

\( \begin{aligned}
& \frac{14}{12}<\frac{20}{12}<\frac{32}{12}<\frac{33}{12}<\frac{39}{12} \\
& =\frac{7}{6}<\frac{5}{3}<\frac{8}{3}<\frac{11}{4}<3 \frac{1}{4}
\end{aligned} \)

13. Determine if the following pairs are equal by writing each in their simplest form.

1. \( \frac{3}{8} \text { and } \frac{375}{1000} \)

2. \( \frac{18}{54} \text { and } \frac{23}{69} \)

3. \( \frac{6}{10} \text { and } \frac{600}{1000} \)

4. \( \frac{17}{27} \cdot \text { and } \frac{25}{45} \)

Solution:

\( \begin{aligned}
&\frac{3}{8} \text { is in the simplest form. }\\
&\frac{375}{1000}=\frac{25 \times 15}{25 \times 40}=\frac{15}{40}=\frac{5 \times 3}{5 \times 8}=\frac{3}{8}
\end{aligned} \)

Shortly, \( \frac{375}{1000}\) = \( \frac{3}{8} \)

2. \( \frac{18}{54} \) = \( \frac{1}{3} \) and \( \frac{23}{69} \) = \( \frac{1}{3} \)

\( \text { So, } \frac{18}{54}=\frac{23}{69}\)

3. \( \frac{6}{10} \) = \( \frac{3}{5} \) and \( \frac{600}{1000}\) = \( \frac{3}{5} \)

\( \text { So, } \frac{6}{10}=\frac{600}{100}\)

4. \( \frac{17}{27} \text { is in the simplest form. } \)

\( \frac{25}{45} \) = \( \frac{5}{9} \)

But \( \frac{17}{27} \neq \frac{5}{9}\)

So, they are not equivalent

14; Compute the following and express the result as a mixed fraction

1. \( 2+\frac{3}{4} \)

2. \( \frac{7}{9}+\frac{1}{3} \)

3. \( 1-\frac{4}{7} \)

4. \( 2 \frac{2}{3}+\frac{1}{2} \)

5. \( \frac{5}{8}-\frac{1}{6} \)

6. \( 2 \frac{2}{3}+3 \frac{1}{2} \)

Solution:

1) \( \begin{aligned}
& \begin{aligned}
2+\frac{3}{4}=\frac{2 \times 4+3}{4} & =\frac{11}{4}=2 \frac{3}{4} \\
\text { Alter }: 2+\frac{3}{4} & =\frac{2}{1}+\frac{3}{4}=\frac{8}{4}+\frac{3}{4} \\
& =\frac{8+3}{4}=\frac{11}{4}=2 \frac{3}{4}
\end{aligned}
\end{aligned} \)

2. \( \frac{7}{9}+\frac{1}{3}=\frac{7}{9}+\frac{3}{9}=\frac{7+3}{9}=\frac{10}{9}=1 \frac{1}{9} \)

3. \( 1-\frac{4}{7}=\frac{7}{7}-\frac{4}{7}=\frac{7-4}{7}=\frac{3}{7} \)

4. \( \begin{aligned}
2 \frac{2}{3}+\frac{1}{2}=\frac{8}{3}+\frac{1}{2}= & \frac{16}{6}+\frac{3}{6} \\
& =\frac{16+3}{6}=\frac{19}{6}=3 \frac{1}{6}
\end{aligned} \)

5. \( \frac{5}{8}-\frac{1}{6}=\frac{15}{24}-\frac{4}{24}=\frac{15-4}{24}=\frac{11}{24} \)

6. \( \begin{aligned}
2 \frac{2}{3} & +3 \frac{1}{2}=\frac{8}{3}+\frac{7}{2} \\
& =\frac{16}{6}+\frac{21}{6}=\frac{16+21}{6}=\frac{37}{6}=6 \frac{1}{6}
\end{aligned} \)

15. Check whether in this square the sum of the numbers in each row and in each column and along the diagonals is the same

Check whetherin this square the sum of the no

Solution: Sum of the fractions of first row

\( =\frac{6}{13}+\frac{13}{13}+\frac{2}{13}=\frac{6+13+2}{13}=\frac{21}{13} \)

Sum of the fractions of second row

\( =\frac{3}{13}+\frac{7}{13}+\frac{11}{13}=\frac{3+7+11}{13}=\frac{21}{13} \)

Sum of the fractions of third row

\( =\frac{12}{13}+\frac{1}{13}+\frac{8}{13}=\frac{12+1+8}{13}=\frac{21}{13} \)

Sum of the fractions of first column

\( =\frac{6}{13}+\frac{3}{13}+\frac{12}{13}=\frac{6+3+12}{13}=\frac{21}{13} \)

Sum of the fractions of second column

\( =\frac{13}{13}+\frac{7}{13}+\frac{1}{13}=\frac{13+7+1}{13}=\frac{21}{13} \)

Sum of the fractions of third column

\( =\frac{2}{13}+\frac{11}{13}+\frac{8}{13}=\frac{2+11+8}{13}=\frac{21}{13} \)

Sum of die fractions of the first diagonal

\( =\frac{6}{13}+\frac{7}{13}+\frac{8}{13}=\frac{6+7+8}{13}=\frac{21}{13} \)

Sum of the fractions of the second diagonal

\( =\frac{2}{13}+\frac{7}{13}+\frac{12}{13}=\frac{21}{13} \)

Thus, the sum of the numbers in each row and in each column and along the diagonals is \( \frac{21}{13} \) which is sam.

Hint: Such type of squares are called magic squares. You can try some more also.

 

Fill in the blanks:

101. Fractions with same denominators are called ………………

Answer: like fractions

102. The product of two improper fractions is………. the two fractions

Answer: greater than

103. A ……of a fraction is obtained by inverting it upside down.

Answer: reciprocal

104. \(\frac{2}{7}\) x …… = 1

Answer:

\(\left(\frac{7}{2}\right)\)

105.\(10 \frac{3}{7}=\)…….

Answer:

\(\left(\frac{73}{7}\right)\)

106. Simplest form of

\(\frac{16}{40}\) is………

Answer:

\(\left(\frac{2}{5}\right)\)

107. \(\frac{8}{15}\)…….\(\frac{2}{3}\) (Use > or <)

Answer: (<)

108. \(\frac{1}{4} \text { of } \frac{4}{3}=\) = …………

Answer:

\(\left(\frac{1}{3}\right)\)

109. 21.36 + 37.3 =………

Answer: (58.66)

110. How much less is 28 km than 42.6 km ?………..

Answer: (14.6 km)

111. Match the following:

1. \( \frac{1}{2}, \frac{2}{4}, \frac{3}{6} \text { are } \)              (  ) A) Like fractions

2. \( \frac{1}{7}, \frac{2}{7}, \frac{5}{7} \text { are }\)               (  ) B) Improper fractions

3. \( 1 \frac{3}{4}, 2 \frac{2}{3}, 3 \frac{5}{8} \text { are }\)      (  ) C) Decimal fractions

4. \( \frac{7}{4}, \frac{8}{5}, \frac{9}{7} \text { are }\)               (  ) D) Equivalent fractions

5. \( \frac{5}{10}, \frac{7}{100}, \frac{9}{1000} \text { are }\)   (  ) E) Mixed fractions

Answer:

1. D 2. A 3. E 4. B 5. C

 

Leave a Comment