Factorisation Of Algebraic Expressions
Question 1. Resolve into factors:
1. x2 – 22x + 120
Solution:
Given: x2 – 22x + 120
= x2-10x-12x-120
= x(x-10)-12(x-10)
= (x-10) (x-12)
x2 – 22x + 120 = (x-10) (x-12)
2. 40+3x-x2
Solution:
Given: 40+3x-x2
= 40+8x-5x-x2
= 8(5+x)-x(5+x)
= (8-x)(5+x)
40+3x-x2 = (8-x)(5+x)
Haryana Board Class 8 Maths Factorisation Solutions
3. (a2-a)2-8(a2-a)+12
Solution:
Given: (a2-a)2-8(a2-a)+12
= (a2-a)2 – 6(a2-a)-2(a2-a)+12
= (a2−a)((a2-a)−6)-2((a2-a)-6)
= (a2-a-2) (a2-a-6)
= (a2+a-2a-2)(a23a+2a-6)
= (a(a+1)-2(a+1))(a(a-3)+2(9-3))
= (a+1) (a-2) (a+2) (a-3)
(a2-a)2-8(a2-a)+12 = (a+1) (a-2) (a+2) (a-3)
4. x2-√3x-6
Solution:
Given: x2-√3x-6
= x2-2√3x+√3x-6
= x(x-2√3)+ √3(x-2√3)
= (x+√3)(x-2√3)
x2-√3x-6 = (x+√3)(x-2√3)
Class 8 Maths Chapter 14 Factorisation Haryana Board
5. (x+1)(x+3)(x-4)(x-6)+13
Solution:
Given (x+1)(x+3)(x-4)(x-6)+ 13
= (x2+3x+x+3)(x2-6x-4x+24)+13
= (x2+4x+3)(x2-10x+24)+13
= x4-10x3+24x2+4x340x2+96x+3x2 = 30x+72+13
= x4-6x3-13x2-66+85
= x4-3x3-3x3-17x2+9x2– 5x2+51x+15x+85
= x4-3x3-17x2-3x3+9x2+51x-5x2+15x+85
= x2(x2-3x-17)-3x(x2-3x-17)-5(x2-3x-17)
= (x2-3x-5)(x2-3x-17)
(x+1)(x+3)(x-4)(x-6)+ 13 = (x2-3x-5)(x2-3x-17)
6. 21x2 + 40xy – 21y2
Solution:
Given: 21x2+40xy-21y2
= 21x2 – 9xy + 49xy – 21y2
= 3x(7x-3y) + 7y(7x-3y)
= (3x+7y)(7x-3y)
21x2+40xy-21y2 = (3x+7y)(7x-3y)
Haryana Board 8th Class Maths Factorisation Questions and Answers
7. 4(2a-3)2 -3(2a-3) (a-1)-7(a-1)2
Solution:
Given: 4(2a-3)2-3(2a-3) (a-1)-7(a-1)2
= 4(4a2-(2a+9)-3(2a2-2a-3a+3)-7(a2+1-2a)
= 16a2 – 48a + 36 – 6a2 + 6a + 9a – 9 – 7a2 – 7 + 14
= 3a2 – 19a + 20
= 3a2 – 15a – 4a +20
= 3(a-5)-4(a-5)
4(2a-3)2-3(2a-3) (a-1)-7(a-1)2 = (3a-4) (a-5)
8. (a+7) (a-10) + 16
Solution:
Given: (a+7)(a-10)+16
= a2-10a+7a-70+16
= a2-3a-54
= a-9a+6a-54
= a(a-9)+6(a-9)
=(a+6)(a-9)
(a+7)(a-10)+16 =(a+6)(a-9)
Chapter 14 Factorisation Class 8 Solutions in Hindi Haryana Board
9. (a2+4a)2+21(a2+4a)+98
Solution:
Given: (a2+4a)2+21(a2+4a)+98
= a4 + 8a3 + 16a2 + 2(a2+4a)+ 98
= a4 + 8a3 + 37a2 +84a +98
= a4+4a3+14a2+4a3+16a2+56a+7a2+28+98
= a2 (a2+4a+14)+4a(a2+4a+14) +7(a2+4a+14)
= (a2+4a+7) (a2 + 4a + 14)
(a2+4a)2+21(a2+4a)+98 = (a2+4a+7) (a2 + 4a + 14)
10. (2a2+ 5a) (2a2 + 5a-19) +84
Solution:
Given: (2a2+ 5a) (2a2 + 5a-19) +84
= 4a4 + 10a3 – 38a2 + 10a3 + 25a2 – 95a + 84
= 4a4 + 20a3 – 13a2 – 95a + 84
= 4a4 + 8a3 – 21a2 + 12a3 + 24a2 – 63a -16a2 – 32a + 84
= a2(4a2+8a-21)+3a(4a2+8a-21)-4(4a2+8a-21)
= (a2+3a-4) (4a2 +8a-21)
= (a2+4a-a-4) (4a2 + 14a-6a-21)
= ((a+4)a-1(a+4)) (2a(2a+7)-3(2a+7))
= (a-1) (a+4) (2a-3)(2a+7)
(2a2+ 5a) (2a2 + 5a-19) +84 = (a-1) (a+4) (2a-3)(2a+7)
11. 8x4+2x2-45
Solution:
Given: 8x4+2x2-45
= 8x2 + 20x2 – 18x2 – 45
= 4x2 (2x2+5)-9(2x2+5)
= (2x2+5)(4x2-9)
= (2x+5) (4x2-6x+6x-9)
= (2x2+5) (2x(2x-3)+3(2x-3))
= (2x2+5)(2x+3)(2x-3)
8x4+2x2-45 = (2x2+5)(2x+3)(2x-3)
Haryana Board Class 8 Maths Exercise 14.1 Solutions
12. xv-x-(a-3)(a-2)
Solution:
Given: x2-x-(a-3)(a-2)
= x2-x-(a2-2a-3a+6)
= x2-x-a2+5a-6
= x2-3x+2x-a2+ax-ax+3a+2a-6
= x2+ax-3x-ax-a2+3a+2x+2a-6
= x(x+a-3)-a(x+a-3)+2(x+a-3)
=(x-a+2)(x+a-3)
x2-x-(a-3)(a-2) =(x-a+2)(x+a-3)
13. 99x2-20xy+99y2
Solution:
Given: 99x2-20xy+99y2
= 99x2-81xy-121xy+99y2
= 9x (11x-9y)-11y (11x-94)
= (9x-114) (11x-94)
99x2-20xy+99y2 = (9x-114) (11x-94)
Question 2. Resolve the following expressions into factors by expressing them as the diffence of two Squares:
1. x2-5x-6
Solution:
Given: x2-5x-6
= x2-6x+x-6
= x(x-6)+1(x-6)
= (x+1)(x-6)
x2-5x-6 = (x+1)(x-6)
2. 3+x-10x2
Solution:
Given: 3+x-10x2
= 3+6x-5x-10x2
= 3(1+2x)-5x(1+2x)
= (3-5x) (1+2x)
3+x-10x2 = (3-5x) (1+2x)
3. 8x-3-4x2
Solution:
Given: 8x-3-4x2
= 6x+2x-3-4x2
= 6x-3+2x-4x2
= 3(2x-1)-2x(2x-1)
= (3-2x) (2x-1)
8x-3-4x2= (3-2x) (2x-1)
4. 6(a+b)2+5(a2-b2)-6 (a-b)2
Solution:
Given: 6(a+b)2+5(a2-b2)-6(a-b)2
= 6(a2+b2+2ab)+5a2-5b2-6(a2+b2-2ab)
= 6a2+6b2+ 12ab+ 5a2-5b2-6a2-6b2 +12ab
= 5a2+24ab-5b2
= 5a2 +25ab-ab-5b2
= 5a(a+5b)-b(a+5b)
= (5a-b)(a+5b)
6(a+b)2+5(a2-b2)-6(a-b)2 = (5a-b)(a+5b)
5. 6x2-13x+6
Solution:
Given: 6x2-13x+6
= 6x2-9x-4x+6
= 3x(2x-3)-2(2x-3)
=(3x-2)(2x-3)
6x2-13x+6 =(3x-2)(2x-3)
Question 3. Choose the Correct answer:
1. x2-3x-28 = ?
- (x+4)(x+7)
- (x+4)(x-7)
- (x-4)(x+7)
- (x-4)(x-7)
Solution:
x2-3x-28
= x2-7x+4x-28
= x(x-7)+4(x-7)
= (x+4) (x-7)
x2-3x-28 = (x+4) (x-7)
The Correct answer is (2)
Important Questions for Class 8 Maths Chapter 14 Haryana Board
2) If (5x2-4x-9) = (x+1)(5x+P), then the value of P is
- 9
- 5
- -9
- none of these
Solution:
= 5x2-4x-9
= 5x2-9x+5x-9 = x(5x-9)+1(5x-9)
= (5x-9)(x+1)
= (x+1)(5x+P)= (x+1) (5x-9)
= 5x + P = 5x-9
⇒ P = -9
The value of P = -9
The Correct answer is (3).
3. 2a2+b2-c2+3ab+ac = ?
- (a+b+c)(2a+b+c)
- (a+b+c)(2a+b-c)
- (a+b+c) (2a-b-c)
- none of these
Solution:
2a2+b2-c2+3ab+ac
= 2a2+ab-ac+2ab+b2-bc+2ac + bc-c2
= a(2a+b-c)+b(2a+b-c) + C(2a+b-c)
= (a+b+c) (2a+b-c)
2a2+b2-c2+3ab+ac = (a+b+c) (2a+b-c)
The Correct answer is (2).
Question 4. write ‘True’ or ‘False’:
1. The Factors of (x2-xy-30y2) is (x+5y)(x-64).
Solution:
x2-xy-30y2 = x2-6xy+5xy-30y2
= x(x-6y) +5y(x-6y) = (x-6y) (x+5y)
The statement is true.
Step-by-Step Solutions for Factorisation Class 8 Haryana Board
2. a3-b3-a(a2-b2)+b(a-b)2=ab(a-b)
Solution:
a3-b3-a(a2-b2)+b(a-b)2=ab(a-b)
= a3-b3-a3+ab2+b(a2+b2-2ab)
= -b3+ab2+ba2+b3-2ab2
= a2b-ab2 = ab(a-b)
The statement is true.
3.(x-1)(x+9)+21=(x+6)(x-2)
Solution:
(x-1)(x+9)+21
= x2+9x-x-9+21
= x2+8x+12
= x2+6x+2x+12
= x(x+6)+2(x+6)
= (x+2)(x+6)
The statement is false.
Question 5. Fill in the blanks:
1. (x+a)(x+b) = x2+(a+b)x + _______.
Solution:
(x+9)(x+6) = x(x+b)+a(x+b)
= x2+bx+ax+ab = x2+(a+b)x+ab
2. (a+b+c)3 = a3 + b2 + c2 + __________.
Solution:
3(a+b)(b+c)(c+a).