Cubes
Question 1. If P = 999, then find the volume of P (p2+3p+3).
Solution:
Given P = 999
= P(P2+3843)
= 999 (1999)2+3 (999)+3)
= 999(99800142997+3)
= 999 (1001001)
= 999,999,999
The volume of P (p2+3p+3) = 999,999,999
Question 2. Find the Cube of:
1. 1001
Solution:
Given: 1001
= (1001)3
– (1001)2(1001)
= 1002001 (1001)
= 1,003,003,001
(1001)3 = 1,003,003,001
2. 998
Solution:
Given: 998
= (998)3
= (998)2(992)
= 996004 (998)
= 994,001,1992
(998)3 = 994,001,1992
3. 5a-4b
Solution:
Given 5a-4b
= (5a-4b)3 [∵ (a-b)2 = a3-3ab+3ab2+b3]
= (5a)3 – 3(5a)24b + 3(5a)(4b)2-(4b)3
= 125a3 – 300a2b + 240ab2 – 64b3
(5a-4b)3 = 125a3 – 300a2b + 240ab2 – 64b3
4. 3a-b+4c
Solution:
= 3a-b+4c
= (3a-b+4c)3 [(∵(a+b+c)3 = a3 + b3 + c2 + 3 (a+b) (b+c) (c+a)]
= (3a)3 + (-b)3 + (4c)3 + 3(3a-b)(-b+4c) (4c+3a)
= 27a3 – b3 + 64c3 + 3((3a-b) (-4bc – 3ab + 16c2 + 12ac)
= 27a3-b3 + 64c3 +3[-12abc – 9a2b + 48ac2 + 362c + 4b2c + 3ab2 – 16bc2 = 12abc]
= 27a3-b3 + 64c3 – 36abc – 27a2b + 144ac2 + 108a2C +12b2c + 9ab2 – 48bc2 – 36abc
= 27a3 – b3 + 64c3 – 27a2b + 9a2 + 108a2c – 72abc + 12b2c +144ac2 – 48bc2
(3a-b+4c)3= 27a3 – b3 + 64c3 – 27a2b + 9a2 + 108a2c – 72abc + 12b2c +144ac2 – 48bc2
Question 3. Simplify:
1. 3.2 x 3.2 x 3.2 – 3 x 3.2 x 3-2 x 1.2 + 3 x 3.2 × 1.2 x 1.2 −1·2 x 1.2 x 1.2
Solution:
Given:
= 3.2 x 32 x 3.2 – 3 x 3.2 x 3.2 x 1.2 + 3 x 3.2 x 1.2 x 1.2-1.2 x 1.2 x 1.2
= (3.2)3-3 (3-2)2 x 1-2 + 3 x 3.2 x (1.2)2 -(1.2)3
= 32.768 – 36.864 + 13.824 – 1.728
= 8
3.2 x 32 x 3.2 – 3 x 3.2 x 3.2 x 1.2 + 3 x 3.2 x 1.2 x 1.2-1.2 x 1.2 x 1.2 = 8
2. (a-b+c)3 + (a+b-c)3 + 6a [a2-(b-c)2]
Solution
Given:
= (a-b+c)3 + (a+b-c)3 + 6a [a2-(b-c)2]
= a3 – b3 + c3 + 3(a-b)(-b+ c)(c+a) + a3 + b2 – c3 + 3(a+b)(b-c)(-c+a) + 6a [a2– b2 + c2 + 2bc]
= a3 – b3 + c3 + 3(a-b)(-bc-ba+c2+ca) + a3 + b3 – c3 + 3(a+b)(-bc+ba+c2-ca) + 6a [a2-b2+c2+2bc]
= a3 – b3 + c3 + 3 (-abc – a2b + ac2 + a2c + b2c + b2a – bc2 – abc) + a3 + b3 – c3 + 3(-abc + a2b + ac2 – a2c -b2c + b2a + bc2 – abc)+ 6a3 – 6ab2 + 6ac2 + 12abc
= a3– b3 + c3 – 3abc – 3a2b + 3ac2+ 3a2c + 3b2C + 3b2a – 3bc2 – 3abc + a3 + b3 – c3 – 3abc + 3a2b + 3ac2 – 3a2c – 3b2c + 3b2a + 3bc2 – 3abc + 6ab3 – 6ab2 + 6ac2 + 12abc
= a3 – 3abc + 3ac2 + 3b2a – 3abc – 3abc + 3ac2 + 3b2a – 3abc + 6a3 – 6ab2 + 6ac2 + 12abc
= 8a3 – 12abc + 6ac2 + 6ab2 – 6ab2 – 6ac2 + 12abc
= 8a3
(a-b+c)3 + (a+b-c)3 + 6a [a2-(b-c)2] = 8a3
Question 4. If a-b = 8 then find the value of (a3-b3-24ab)
Solution:
Given: a-b=8
= a3-b3-24ab
= (a)3 – (b)3 -24ab
= (a-b)3 + 3 x a x b(a-b)- 24ab
= (8)3 +3ab (8)-24ab
= 512 + 24ab – 24ab
= 512
The value of (a3-b3-24ab) = 512
Question 5. Find the value of 8x3-36x2+54x-30 lf x=-5
Solution:
Given: X=-5
= 8x3-36x2+54x – 30
= 8(-5)3 – 36(-5)2 + 54(-5)-30
= 8(-125)-36(25)-270-30
= -1000-900-270-30
= 1900+300
= 2200
The value of 8x3-36x2+54x-30 = 2200
Question 6. Find the product of the following:
1. (x-3)(x2+3x+9)
Solution:
Given: (x-3)(x2+3x+9)
= x3 + 3x2 + 9x – 3x2 – 9x – 27
= x3-27
(x-3)(x2+3x+9) = x3-27
2. (a2+b2)(a4-a2b2+b4)
Solution:
Given (a2+b2)(a4-a2b2+b4)
= (a2+b2)(a4-a2b2+b4)
= a2(a4-a2b2+b4) + b2(a4-a2b2+b4)
= a6 – a4b2 + a2b4 + b2á4 – a2b4+ b6
= a6+b6
(a2+b2)(a4-a2b2+b4) = a6+b6
3. (4a2-9b2) (4a2+6ab+9b2) (4a2-6ab+9b2)
Solution:
Given: (4a2-9b2) (4a2+6ab+9b2) (4a2-6ab+9b2)
= (4a2(4a2+6ab+9b2)-9b2(4a2+6ab+9b2))(4a2-6ab+9b2)
= (16a4 + 24a3b + 36a2b2 – 36a2b2 – 54ab3 – 81(b4)(4a2-6ab+9b2)
= 64a6 + 96a5b – 216a3b3 – 324a2b4 – 96a5b – 144a4b2 + 324a2b4 + 486ab5 + 144a4b2 + 216a3b3 – 486ab5 – 729b6
= 64a6 – 729b6
(4a2-9b2) (4a2+6ab+9b2) (4a2-6ab+9b2) = 64a6 – 729b6
Question 7. Resolve into factors:
1. \(a^3-9 b^3-3 a b(a-b)\)
Solution:
Given: \(a^3-9 b^3-3 a b(a-b)\)
= \(a^3-9 b^3-3 a b(a-b)\)
= \(a^3-b^3-3 a b(a-b)-8 b^3\)
= \((a-b)^3-(2 b)^3\)
= \((a-b-2 b)\left\{(a-b)^2+(a-b) \cdot 2 b+(2 b)^2\right\}\)
= \((a-3 b)\left(a^2-2 a b+b^2+2 a b-2 b^2+4 b^2\right)\)
= \((a-3 b)\left(a^2+3 b^2\right)\)
\(a^3-9 b^3-3 a b(a-b)\) = \((a-3 b)\left(a^2+3 b^2\right)\)
2. a12 – b12
Solution:
Given a12 – b12
= (a6)2 – (b6)2
= \(\left(a^6+b^6\right)\left(a^6-b^6\right)\)
= \(\left\{\left(a^2\right)^3+\left(b^2\right)^3\right\}\left\{\left(a^3\right)^2-\left(b^3\right)^2\right\}\)
= \(\left(a^2+b^2\right)\left\{\left(a^2\right)^2-a^2 b^2+\left(b^2\right)^2\right\}\left(a^3+b^3\right)\left(a^3-b^3\right)\)
= \(\left(a^2+b^2\right)\left(a^4-a^2 b^2+b^4\right)(a+b)\left(a^2-a b+b^2\right)(a-b)\left(a^2+a b+b^2\right)\)
= \((a+b)(a-b)\left(a^2+b^2\right)\left(a^2+a b+b^2\right)\left(a^2-a b+b^2\right)\left(a^4-a^2 b^2+b^4\right)\)
a12 – b12 = \((a+b)(a-b)\left(a^2+b^2\right)\left(a^2+a b+b^2\right)\left(a^2-a b+b^2\right)\left(a^4-a^2 b^2+b^4\right)\)
Question 8. Choose the Correct answer:
1. The Cube of 99 is
- 972099
- 970299
- 979029
- 972909
Solution:
=(99)3
= (99)2 99
= 9801 x 99
= 970299
(99)3 = 970299
The Correct answer is (2).
2. If a+b+c=0, then a3+b3+c3 = ?
- 3abc
- abc
- c
- none of these
Solution:
= a3 + b3 + c3
= (a+b)3 -3ab (a+b) + c3
= (-c)3-3ab (-c) +c3 [a+b+c=0)
= -c3+3abc+c3
= 3abc
a3 + b3 + c3 = 3abc
So the Correct answer is (1).
3. If a-b=1 and a3-b3=61, then the Value of ab is
- 10
- 20
- 30
- none of these
Solution:
= a3-b3=61
= (a-b)3 + 3ab (a-b) = 61
= (1)3 + 3ab(1) = 61
= 3ab = 61-1
= 3ab = 60
= ab = \(\frac{60}{3}\)
= ab = 20
So, the Correct answer is (2).
Question 9. write ‘True’ or ‘False”.
1. 216 is not a perfect Cube.
Solution:
216 = 36×6
216= 6x6x6
216=(6)3
The statement is False.
2. 1729 is a Hardy Ramanujam number.
Solution: The statement is true.
3. p3q3+1 = (pq-1)(p2q2 + pq + 1)
Solution:
p3q3 + 1 = (pq)3 + (1)3
p3q3 + 1= (pq+1){(pq)2 – pq.1 + (1)2}
p3q3 + 1= (pq+1) (p2q2 – pq+1)
Statement is False.
Question 10. Fill in the blanks.
1. The Cube root of Single digit number may also be a _________ digit number.
Solution: Single.
2. a3+b3 = ___________ x (a2-ab+b2)
Solution: a3 + b3 = (a+b) (a2-ab+b2)
3. (a+b)3 = a2 + b3 + __________.
Solution: (a+b)3 = a3 + b3 + 3ab(a+b)