Haryana Board Class 8 Maths Algebra Chapter 7 cubes

Cubes

Question 1. If P = 999, then find the volume of P (p2+3p+3).

Solution:

Given P = 999

= P(P2+3843)

= 999 (1999)2+3 (999)+3)

= 999(99800142997+3)

= 999 (1001001)

= 999,999,999

The volume of P (p2+3p+3) = 999,999,999

Question 2. Find the Cube of:

1. 1001

Solution:

Given: 1001

= (1001)3

– (1001)2(1001)

= 1002001 (1001)

= 1,003,003,001

(1001)3 = 1,003,003,001

2. 998

Solution:

Given: 998

= (998)3

= (998)2(992)

= 996004 (998)

= 994,001,1992

(998)3 = 994,001,1992

3. 5a-4b

Solution:

Given 5a-4b

= (5a-4b)3 [∵ (a-b)2 = a3-3ab+3ab2+b3]

= (5a)3 – 3(5a)24b + 3(5a)(4b)2-(4b)3

= 125a3 – 300a2b + 240ab2 – 64b3

(5a-4b)3  = 125a3 – 300a2b + 240ab2 – 64b3

4. 3a-b+4c

Solution:

= 3a-b+4c

= (3a-b+4c)3 [(∵(a+b+c)3 = a3 + b3 + c2 + 3 (a+b) (b+c) (c+a)]

= (3a)3 + (-b)3 + (4c)3 + 3(3a-b)(-b+4c) (4c+3a)

= 27a3 – b3 + 64c3 + 3((3a-b) (-4bc – 3ab + 16c2 + 12ac)

= 27a3-b3 + 64c3 +3[-12abc – 9a2b + 48ac2 + 362c + 4b2c + 3ab2 – 16bc2 = 12abc]

= 27a3-b3 + 64c3 – 36abc – 27a2b + 144ac2 + 108a2C +12b2c + 9ab2 – 48bc2 – 36abc

= 27a3 – b3 + 64c3 – 27a2b + 9a2 + 108a2c – 72abc + 12b2c +144ac2 – 48bc2

(3a-b+4c)3= 27a3 – b3 + 64c3 – 27a2b + 9a2 + 108a2c – 72abc + 12b2c +144ac2 – 48bc2

Question 3. Simplify:

1. 3.2 x 3.2 x 3.2 – 3 x 3.2 x 3-2 x 1.2 + 3 x 3.2 × 1.2 x 1.2 −1·2 x 1.2 x 1.2

Solution:

Given:

= 3.2 x 32 x 3.2 – 3 x 3.2 x 3.2 x 1.2 + 3 x 3.2 x 1.2 x 1.2-1.2 x 1.2 x 1.2

= (3.2)3-3 (3-2)2 x 1-2 + 3 x 3.2 x (1.2)2 -(1.2)3

= 32.768 – 36.864 + 13.824 – 1.728

= 8

3.2 x 32 x 3.2 – 3 x 3.2 x 3.2 x 1.2 + 3 x 3.2 x 1.2 x 1.2-1.2 x 1.2 x 1.2 = 8

2. (a-b+c)3 + (a+b-c)3 + 6a [a2-(b-c)2]

Solution

Given:

= (a-b+c)3 + (a+b-c)3 + 6a [a2-(b-c)2]

= a3 – b3 + c3 + 3(a-b)(-b+ c)(c+a) + a3 + b2 – c3 + 3(a+b)(b-c)(-c+a) + 6a [a2– b2 + c2 + 2bc]

= a3 – b3 + c3 + 3(a-b)(-bc-ba+c2+ca) + a3 + b3 – c3 + 3(a+b)(-bc+ba+c2-ca) + 6a [a2-b2+c2+2bc]

= a3 – b3 + c3 + 3 (-abc – a2b + ac2 + a2c + b2c + b2a – bc2 – abc) + a3 + b3 – c3 + 3(-abc + a2b + ac2 – a2c -b2c + b2a + bc2 – abc)+ 6a3 – 6ab2 + 6ac2 + 12abc

= a3– b3 + c3 – 3abc – 3a2b + 3ac2+ 3a2c + 3b2C + 3b2a – 3bc2 – 3abc + a3 + b3 – c3 – 3abc + 3a2b + 3ac2 – 3a2c – 3b2c + 3b2a + 3bc2 – 3abc + 6ab3 – 6ab2 + 6ac2 + 12abc

= a3 – 3abc + 3ac2 + 3b2a – 3abc – 3abc + 3ac2 + 3b2a – 3abc + 6a3 – 6ab2 + 6ac2 + 12abc

= 8a3 – 12abc + 6ac2 + 6ab2 – 6ab2 – 6ac2 + 12abc

= 8a3

(a-b+c)3 + (a+b-c)3 + 6a [a2-(b-c)2] = 8a3

Question 4. If a-b = 8 then find the value of (a3-b3-24ab)

Solution:

Given: a-b=8

= a3-b3-24ab

= (a)3 – (b)3 -24ab

= (a-b)3 + 3 x a x b(a-b)- 24ab

= (8)3 +3ab (8)-24ab

= 512 + 24ab – 24ab

= 512

The value of (a3-b3-24ab) = 512

Question 5. Find the value of 8x3-36x2+54x-30 lf x=-5

Solution:

Given: X=-5

= 8x3-36x2+54x – 30

= 8(-5)3 – 36(-5)2 + 54(-5)-30

= 8(-125)-36(25)-270-30

= -1000-900-270-30

= 1900+300

= 2200

The value of 8x3-36x2+54x-30 = 2200

Question 6. Find the product of the following:

1. (x-3)(x2+3x+9)

Solution:

Given: (x-3)(x2+3x+9)

= x3 + 3x2 + 9x – 3x2 – 9x – 27

= x3-27

(x-3)(x2+3x+9) = x3-27

2. (a2+b2)(a4-a2b2+b4)

Solution:

Given (a2+b2)(a4-a2b2+b4)

= (a2+b2)(a4-a2b2+b4)

= a2(a4-a2b2+b4) + b2(a4-a2b2+b4)

= a6 – a4b2 + a2b4 + b2á4 – a2b4+ b6

= a6+b6

(a2+b2)(a4-a2b2+b4) = a6+b6

3. (4a2-9b2) (4a2+6ab+9b2) (4a2-6ab+9b2)

Solution:

Given: (4a2-9b2) (4a2+6ab+9b2) (4a2-6ab+9b2)

= (4a2(4a2+6ab+9b2)-9b2(4a2+6ab+9b2))(4a2-6ab+9b2)

= (16a4 + 24a3b + 36a2b2 – 36a2b2 – 54ab3 – 81(b4)(4a2-6ab+9b2)

= 64a6 + 96a5b – 216a3b3 – 324a2b4 – 96a5b – 144a4b2 + 324a2b4 + 486ab5 + 144a4b2 + 216a3b3 – 486ab5 – 729b6

= 64a6 – 729b6

(4a2-9b2) (4a2+6ab+9b2) (4a2-6ab+9b2) = 64a6 – 729b6

Question 7. Resolve into factors:

1. \(a^3-9 b^3-3 a b(a-b)\)

Solution:

Given: \(a^3-9 b^3-3 a b(a-b)\)

= \(a^3-9 b^3-3 a b(a-b)\)

= \(a^3-b^3-3 a b(a-b)-8 b^3\)

= \((a-b)^3-(2 b)^3\)

= \((a-b-2 b)\left\{(a-b)^2+(a-b) \cdot 2 b+(2 b)^2\right\}\)

= \((a-3 b)\left(a^2-2 a b+b^2+2 a b-2 b^2+4 b^2\right)\)

= \((a-3 b)\left(a^2+3 b^2\right)\)

\(a^3-9 b^3-3 a b(a-b)\) = \((a-3 b)\left(a^2+3 b^2\right)\)

2. a12 – b12

Solution:

Given a12 – b12

= (a6)2 – (b6)2

= \(\left(a^6+b^6\right)\left(a^6-b^6\right)\)

= \(\left\{\left(a^2\right)^3+\left(b^2\right)^3\right\}\left\{\left(a^3\right)^2-\left(b^3\right)^2\right\}\)

= \(\left(a^2+b^2\right)\left\{\left(a^2\right)^2-a^2 b^2+\left(b^2\right)^2\right\}\left(a^3+b^3\right)\left(a^3-b^3\right)\)

= \(\left(a^2+b^2\right)\left(a^4-a^2 b^2+b^4\right)(a+b)\left(a^2-a b+b^2\right)(a-b)\left(a^2+a b+b^2\right)\)

= \((a+b)(a-b)\left(a^2+b^2\right)\left(a^2+a b+b^2\right)\left(a^2-a b+b^2\right)\left(a^4-a^2 b^2+b^4\right)\)

a12 – b12 = \((a+b)(a-b)\left(a^2+b^2\right)\left(a^2+a b+b^2\right)\left(a^2-a b+b^2\right)\left(a^4-a^2 b^2+b^4\right)\)

Question 8. Choose the Correct answer:

1. The Cube of 99 is

  1. 972099
  2. 970299
  3. 979029
  4. 972909

Solution:

=(99)3

= (99)2 99

= 9801 x 99

= 970299

(99)3 = 970299

The Correct answer is (2).

2. If a+b+c=0, then a3+b3+c3 = ?

  1. 3abc
  2. abc
  3. c
  4. none of these

Solution:

= a3 + b3 + c3

= (a+b)3 -3ab (a+b) + c3

= (-c)3-3ab (-c) +c3 [a+b+c=0)

= -c3+3abc+c3

= 3abc

a3 + b3 + c3 = 3abc

So the Correct answer is (1).

3. If a-b=1 and a3-b3=61, then the Value of ab is

  1. 10
  2. 20
  3. 30
  4. none of these

Solution:

= a3-b3=61

= (a-b)3 + 3ab (a-b) = 61

= (1)3 + 3ab(1) = 61

= 3ab = 61-1

= 3ab = 60

= ab = \(\frac{60}{3}\)

= ab = 20

So, the Correct answer is (2).

Question 9. write ‘True’ or ‘False”.

1. 216 is not a perfect Cube.

Solution:

216 = 36×6

216= 6x6x6

216=(6)3

The statement is False.

2. 1729 is a Hardy Ramanujam number.

Solution: The statement is true.

3. p3q3+1 = (pq-1)(p2q2 + pq + 1)

Solution:

p3q3 + 1 = (pq)3 + (1)3

p3q3 + 1= (pq+1){(pq)2 – pq.1 + (1)2}

p3q3 + 1= (pq+1) (p2q2 – pq+1)

Statement is False.

Question 10. Fill in the blanks.

1. The Cube root of Single digit number may also be a _________ digit number.

Solution: Single.

2. a3+b3 = ___________ x (a2-ab+b2)

Solution: a3 + b3 = (a+b) (a2-ab+b2)

3. (a+b)3 = a2 + b3 + __________.

Solution: (a+b)3 = a3 + b3 + 3ab(a+b)

Haryana Board Class 8 Maths Algebra Chapter 14 Factorisation

Factorisation Of Algebraic Expressions

Question 1. Resolve into factors:

1. x2 – 22x + 120

Solution:

Given: x2 – 22x + 120

= x2-10x-12x-120

= x(x-10)-12(x-10)

= (x-10) (x-12)

x2 – 22x + 120 = (x-10) (x-12)

2. 40+3x-x2

Solution:

Given: 40+3x-x2

= 40+8x-5x-x2

= 8(5+x)-x(5+x)

= (8-x)(5+x)

40+3x-x2 = (8-x)(5+x)

3. (a2-a)2-8(a2-a)+12

Solution:

Given: (a2-a)2-8(a2-a)+12

= (a2-a)2 – 6(a2-a)-2(a2-a)+12

= (a2−a)((a2-a)−6)-2((a2-a)-6)

= (a2-a-2) (a2-a-6)

= (a2+a-2a-2)(a23a+2a-6)

= (a(a+1)-2(a+1))(a(a-3)+2(9-3))

= (a+1) (a-2) (a+2) (a-3)

(a2-a)2-8(a2-a)+12 = (a+1) (a-2) (a+2) (a-3)

4. x2-√3x-6

Solution:

Given: x2-√3x-6

= x2-2√3x+√3x-6

= x(x-2√3)+ √3(x-2√3)

= (x+√3)(x-2√3)

x2-√3x-6 = (x+√3)(x-2√3)

5. (x+1)(x+3)(x-4)(x-6)+13

Solution:

Given (x+1)(x+3)(x-4)(x-6)+ 13

= (x2+3x+x+3)(x2-6x-4x+24)+13

= (x2+4x+3)(x2-10x+24)+13

= x4-10x3+24x2+4x340x2+96x+3x2 = 30x+72+13

= x4-6x3-13x2-66+85

= x4-3x3-3x3-17x2+9x2– 5x2+51x+15x+85

= x4-3x3-17x2-3x3+9x2+51x-5x2+15x+85

= x2(x2-3x-17)-3x(x2-3x-17)-5(x2-3x-17)

= (x2-3x-5)(x2-3x-17)

(x+1)(x+3)(x-4)(x-6)+ 13 = (x2-3x-5)(x2-3x-17)

6. 21x2 + 40xy – 21y2

Solution:

Given: 21x2+40xy-21y2

= 21x2 – 9xy + 49xy – 21y2

= 3x(7x-3y) + 7y(7x-3y)

= (3x+7y)(7x-3y)

21x2+40xy-21y2 = (3x+7y)(7x-3y)

7. 4(2a-3)2 -3(2a-3) (a-1)-7(a-1)2

Solution:

Given: 4(2a-3)2-3(2a-3) (a-1)-7(a-1)2

= 4(4a2-(2a+9)-3(2a2-2a-3a+3)-7(a2+1-2a)

= 16a2 – 48a + 36 – 6a2 + 6a + 9a – 9 – 7a2 – 7 + 14

= 3a2 – 19a + 20

= 3a2 – 15a – 4a +20

= 3(a-5)-4(a-5)

4(2a-3)2-3(2a-3) (a-1)-7(a-1)2 = (3a-4) (a-5)

8. (a+7) (a-10) + 16

Solution:

Given: (a+7)(a-10)+16

= a2-10a+7a-70+16

= a2-3a-54

= a-9a+6a-54

= a(a-9)+6(a-9)

=(a+6)(a-9)

(a+7)(a-10)+16 =(a+6)(a-9)

9. (a2+4a)2+21(a2+4a)+98

Solution:

Given: (a2+4a)2+21(a2+4a)+98

= a4 + 8a3 + 16a2 + 2(a2+4a)+ 98

= a4 + 8a3 + 37a2 +84a +98

= a4+4a3+14a2+4a3+16a2+56a+7a2+28+98

= a2 (a2+4a+14)+4a(a2+4a+14) +7(a2+4a+14)

= (a2+4a+7) (a2 + 4a + 14)

(a2+4a)2+21(a2+4a)+98 = (a2+4a+7) (a2 + 4a + 14)

10. (2a2+ 5a) (2a2 + 5a-19) +84

Solution:

Given: (2a2+ 5a) (2a2 + 5a-19) +84

= 4a4 + 10a3 – 38a2 + 10a3 + 25a2 – 95a + 84

= 4a4 + 20a3 – 13a2 – 95a + 84

= 4a4 + 8a3 – 21a2 + 12a3 + 24a2 – 63a -16a2 – 32a + 84

= a2(4a2+8a-21)+3a(4a2+8a-21)-4(4a2+8a-21)

= (a2+3a-4) (4a2 +8a-21)

= (a2+4a-a-4) (4a2 + 14a-6a-21)

= ((a+4)a-1(a+4)) (2a(2a+7)-3(2a+7))

= (a-1) (a+4) (2a-3)(2a+7)

(2a2+ 5a) (2a2 + 5a-19) +84 = (a-1) (a+4) (2a-3)(2a+7)

11. 8x4+2x2-45

Solution:

Given: 8x4+2x2-45

= 8x2 + 20x2 – 18x2 – 45

= 4x2 (2x2+5)-9(2x2+5)

= (2x2+5)(4x2-9)

= (2x+5) (4x2-6x+6x-9)

= (2x2+5) (2x(2x-3)+3(2x-3))

= (2x2+5)(2x+3)(2x-3)

8x4+2x2-45 = (2x2+5)(2x+3)(2x-3)

12. xv-x-(a-3)(a-2)

Solution:

Given: x2-x-(a-3)(a-2)

= x2-x-(a2-2a-3a+6)

= x2-x-a2+5a-6

= x2-3x+2x-a2+ax-ax+3a+2a-6

= x2+ax-3x-ax-a2+3a+2x+2a-6

= x(x+a-3)-a(x+a-3)+2(x+a-3)

=(x-a+2)(x+a-3)

x2-x-(a-3)(a-2) =(x-a+2)(x+a-3)

13. 99x2-20xy+99y2

Solution:

Given: 99x2-20xy+99y2

= 99x2-81xy-121xy+99y2

= 9x (11x-9y)-11y (11x-94)

= (9x-114) (11x-94)

99x2-20xy+99y= (9x-114) (11x-94)

Question 2. Resolve the following expressions into factors by expressing them as the diffence of two Squares:

1. x2-5x-6

Solution:

Given: x2-5x-6

= x2-6x+x-6

= x(x-6)+1(x-6)

= (x+1)(x-6)

x2-5x-6 = (x+1)(x-6)

2. 3+x-10x2

Solution:

Given: 3+x-10x2

= 3+6x-5x-10x2

= 3(1+2x)-5x(1+2x)

= (3-5x) (1+2x)

3+x-10x2 = (3-5x) (1+2x)

3. 8x-3-4x2

Solution:

Given: 8x-3-4x2

= 6x+2x-3-4x2

= 6x-3+2x-4x2

= 3(2x-1)-2x(2x-1)

= (3-2x) (2x-1)

8x-3-4x2= (3-2x) (2x-1)

4. 6(a+b)2+5(a2-b2)-6 (a-b)2

Solution:

Given: 6(a+b)2+5(a2-b2)-6(a-b)2

= 6(a2+b2+2ab)+5a2-5b2-6(a2+b2-2ab)

= 6a2+6b2+ 12ab+ 5a2-5b2-6a2-6b2 +12ab

= 5a2+24ab-5b2

= 5a2 +25ab-ab-5b2

= 5a(a+5b)-b(a+5b)

= (5a-b)(a+5b)

6(a+b)2+5(a2-b2)-6(a-b)2 = (5a-b)(a+5b)

5. 6x2-13x+6

Solution:

Given: 6x2-13x+6

= 6x2-9x-4x+6

= 3x(2x-3)-2(2x-3)

=(3x-2)(2x-3)

6x2-13x+6 =(3x-2)(2x-3)

Question 3. Choose the Correct answer:

1. x2-3x-28 = ?

  1. (x+4)(x+7)
  2. (x+4)(x-7)
  3. (x-4)(x+7)
  4. (x-4)(x-7)

Solution:

x2-3x-28

= x2-7x+4x-28

= x(x-7)+4(x-7)

= (x+4) (x-7)

x2-3x-28 = (x+4) (x-7)

The Correct answer is (2)

2) If (5x2-4x-9) = (x+1)(5x+P), then the value of P is

  1. 9
  2. 5
  3. -9
  4. none of these

Solution:

= 5x2-4x-9

= 5x2-9x+5x-9 = x(5x-9)+1(5x-9)

= (5x-9)(x+1)

= (x+1)(5x+P)= (x+1) (5x-9)

= 5x + P = 5x-9

⇒ P = -9

The value of P = -9

The Correct answer is (3).

3. 2a2+b2-c2+3ab+ac = ?

  1. (a+b+c)(2a+b+c)
  2. (a+b+c)(2a+b-c)
  3. (a+b+c) (2a-b-c)
  4. none of these

Solution:

2a2+b2-c2+3ab+ac

= 2a2+ab-ac+2ab+b2-bc+2ac + bc-c2

= a(2a+b-c)+b(2a+b-c) + C(2a+b-c)

= (a+b+c) (2a+b-c)

2a2+b2-c2+3ab+ac = (a+b+c) (2a+b-c)

The Correct answer is (2).

Question 4. write ‘True’ or ‘False’:

1. The Factors of (x2-xy-30y2) is (x+5y)(x-64).

Solution:

x2-xy-30y2 = x2-6xy+5xy-30y2

= x(x-6y) +5y(x-6y) = (x-6y) (x+5y)

The statement is true.

2. a3-b3-a(a2-b2)+b(a-b)2=ab(a-b)

Solution:

a3-b3-a(a2-b2)+b(a-b)2=ab(a-b)

= a3-b3-a3+ab2+b(a2+b2-2ab)

= -b3+ab2+ba2+b3-2ab2

= a2b-ab2 = ab(a-b)

The statement is true.

3.(x-1)(x+9)+21=(x+6)(x-2)

Solution:

(x-1)(x+9)+21

= x2+9x-x-9+21

= x2+8x+12

= x2+6x+2x+12

= x(x+6)+2(x+6)

= (x+2)(x+6)

The statement is false.

Question 5. Fill in the blanks:

1. (x+a)(x+b) = x2+(a+b)x + _______.

Solution:

(x+9)(x+6) = x(x+b)+a(x+b)

= x2+bx+ax+ab = x2+(a+b)x+ab

2. (a+b+c)3 = a3 + b2 + c2 + __________.

Solution:

3(a+b)(b+c)(c+a).

Haryana Board Class 8 Maths Solutions

  • Chapter 1 Rational Numbers
  • Chapter 2 Linear Equation in One Variable
  • Chapter 3 Understanding Quadrilaterals
  • Chapter 4 Practical Geometry
  • Chapter 5 Data Handling
  • Chapter 6 Square and Square Roots
  • Chapter 7 Cube and Cube Roots
  • Chapter 8 Comparing Quantities
  • Chapter 9 Algebraic Expressions and Identities
  • Chapter 10 Visualising Solid Shapes
  • Chapter 11 Mensuration
  • Chapter 12 Exponents and Powers
  • Chapter 13 Direct and Indirect Proportions
  • Chapter 14 Factorisation
  • Chapter 15 Introduction to Graphs
  • Chapter 16 Playing with Numbers